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Review Article 
Electronic and Ionic Ordering in Condensed 
Matter Plasmast 
(Phase Transitions Induced by Coulomb Interactions) 

N. H. MARCH 
Theoretical Chemistry Department, University of Oxford, 7 South Parks Road, 
Oxford OX1 3TG. England 

(Received Jantrary 30, 1981) 

Recent progress in treating phase transitions induced by Coulomb interactions is reviewed. 
This is done by appealing to simple models, and in particular to the one-component plasma, 
with its quantum-mechanical counterpart jellium. The relevance of the phase transition, to a 
body-centred-cubic crystal in the classical one-component plasma, to the freezing of liquid 
metals Na and K is stressed. By generalizing these arguments to a two-component system, 
regularities in the freezing of the molten alkali halides are understandable. Sublattice disorder in 
superionics. driven by Coulomb forces, is then discussed. Finally, the ordering of electrons in 
jellium, in the limit of complete degeneracy, is considered; evidence being presented for the 
existence of electron liquids in molten Na and K.  

1 INTRODUCTION 

While very considerable progress has been made in the theory of second- 
order transitions over the last decade or so, first-order transitions such as 
freezing of a liquid metal, or a molten salt, are much less well understood. 
However, while the problem of freezing remains difficult for the types of 
force law appropriate say in liquid argon, unless one resorts to computer 
experiment, there is a class of transitions induced by long-range Coulomb 
interaction in which our understanding of the way a phase transition 
can arise is much clearer. Even here, however, with the simplest possible clas- 
sical model, the one-component plasma, to obtain firm quantitative results 
one must appeal to computer calculations but nevertheless one has a clear 
picture of what is happening as the phase transition occurs. 

t The content of this review is, in essence, that of an invited paper given at the York Con- 
ference of the Institute of Physics in January, 1981. 
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I02 N. H. MARCH 

Furthermore, while initially the problem of phase transitions focused on the 
thermodynamic aspects, it has become fruitful more recently to move 
attention to the structure of the liquid phase. Thus, as the title of this review 
emphasizes, we shall be discussing phase transitions induced by Coulomb 
interactions in terms of ordering in the condensed matter plasmas. The idea 
of long-range order in the crystalline solid state needs little emphasis; one 
can, for instance, conveniently define the Fourier components of the periodic 
ion density as a set of order parameters to use in discussing the phase 
transition. 

When we turn to the liquid phase, the appropriate tool to discuss the 
short-range order is known to be the radial distribution function g(r), or its 
Fourier transform S(q). This latter quantity is accessible experimentally, and 
if we consider its determination by X-ray scattering, then if Z(q) is the in- 
tensity of X-rays of incident wavelength A scattered through an angle 8, 
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Structure factor of liquid Na at 100°C, obtained by X-ray scattering. Arter FIGURE 1 
Greenfield rt a/. (Ref 1). 
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ORDERING IN METALS AND MOLTEN SALTS 103 

with q = 4n sin ell, from a liquid sample of N atoms, one can write 

where Aq) is the atomic scattering factor. The structure factor for liquid 
Na near its freezing point determined in this way by Greenfield et al.' is 
shown in Figure 1; we shall return to consider the height of its first peak 
around 2 k' below. That systematics involving the first peak in the struc- 
ture factor occur on freezing Lennard-Jones like liquids was known to 
Verlet,' and with such liquids in mind Ramakrishnan and Yussouff3 have 
developed a theory of freezing. As already stressed, we are interested here 
in the consequences of the long-range Coulomb interaction in causing 
freezing. Though we shall approach this via models, we shall deal with 
(a) liquid metals, especially those with weak electron-ion interaction like 
Na and K, which have recently been focused on by Ferraz and the writer4 
and (b) ionic condensed phases. Specifically under (b), March and Tosi' 
have discussed the structure of molten salts near their freezing points, with 
reference to the alkali halides. Also under (b), brief reference will be made 
to the fluorite fast ion conductors, this area having recently been considered 
in more detaiL6 

In the following section we shall begin the discussion of models in which 
the effects of Coulomb interactions are directly exposed. In this review we 
shall consider: 

i) The one-component plasma. Here point particles carrying charges e 
move in a neutralizing uniform background which cannot respond. The 
important length in the problem is the mean interparticle spacing r,. One 
has two important cases of (i); (a) the classical plasma, which we shall argue 
has relevance to the positive ions in Na metal, for which the conduction 
electrons are almost uniform because of the weak electron-ion interaction, 
and (b) the quanta1 plasma, or jellium, where interacting electrons which are 
completely degenerate move in a uniform positive background. 

ii) Charged hard spheres, or a two-component plasma. This is relevant 
to molten alkali halides. 

2 STRUCTURE AND PHASE TRANSITION IN A 
ONE-COMPONENT CLASSICAL PLASMA 

From the length rs introduced above, a measure of the Coulomb interaction 
energy is evidently e2/rs.  The reason why the one-component plasma model 
is so attractive as a model system is that its properties are characterized by 
only one parameter r, which is defined as the ratio: Coulomb energy ez/rs to 
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FIGURE 2 Pair distribution function g(r)  for classical one-component plasma. Dotted curve. 
Computer simulation (Ref. 8). Solid curve. Approximate analytic model (Ref. 7). Scale of 
length rn1’3 is proportional to r / r s .  

thermal energy k ,  T : 

This means that the structure factor S(q),  or its Fourier transform g(r) ,  
depend only on specifying the value of r in Eq. (2.1). Though approximate 
analytic theories’ exist to allow g(r)  to be calculated in the liquid regime, 
these are not yet capable of predicting the phase transition to a crystalline 
state. Fortunately, the early computer experiments of Teller and his col- 
leagues: followed by the work of Hansen’ and others, have made available 
precise quantitative results for (a) the radial distribution function g(r )  for a 
variety of values of the coupling parameter r in the fluid phase and (b) the 
critical value of r at which the one-component plasma freezes. 

As regards (b), it was shown in Ref. 8 that the one-component classical 
plasma crystallizes when r exceeds a critical value of 160. For a smaller 
value of r, namely 120, Figure 2 shows the computer results (dotted curve) 
while in the solid curve the approximate analytic result of Gillan” is dis- 
played. The short-range order in the ion liquid is clear and this short-range 
order will evidently become more pronounced as the critical r is approached. 
To make this point more explicit, Ferraz and March’’ have plotted the 
height of the first peak in S(q)  for the one-component plasma from the 
computer experiments and the curve shown in Figure 3 is then obtained. 
It will be seen that as r is increased from small values, i.e. from the Debye- 
Huckel regime, S,,, increases from its “gas” value of unity to a value of 2.71 
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ORDERING IN METALS AND MOLTEN SALTS 105 
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FIGURE 3 Smax versus coupling parameter r for one-component plasma (after Ferraz and 
March14 

at the critical r of 160. Thus, alternative criteria for freezing of the one- 
component plasma are: 

(I) The plasma freezes when the ratio : Coulomb energy divided by thermal 
energy is 160 or greater. 

(11) The one-component classical plasma freezes when the principal peak 
of its structure factor reaches a height S,,, = 2.71. 

3 FREEZING OF LIQUID ALKALIS Na A N D  K 

This is the point at which we want to confront the criteria (I) and (11) above 
for freezing of the classical one-component plasma with experimental facts 
on the liquid alkali metals Na and K. The reasons why it is tempting to regard 
these two liquid metals as ideal candidates for a description by such a model 
are (a) their small ion cores and (b) their weak electron-ion interactions. 
Of course, for some purposes, and in particular for calculating the velocity 
of sound, it is essential to allow for the weak electron-ion interaction, 
thereby screening the ionic plasma frequency to yield an acoustic phonon 
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106 N. H. MARCH 

dispersion relation at small k .  Ivanov et al.” pointed out the numerical rele- 
vance of criterion (I) to the melting curve of Na, and very recently Ferraz and 
March” have drawn attention to the fact that liquid Na and liquid K freeze 
when the height S,,, of the structure factor becomes respectively 2.80 (at 
373 K; cf. Figure 1 for result of Greenfield et al.) and 2.73 (338 K). 

Thesecond point to be made here is that the freezing of the one-component 
plasma takes place to a body-centred-cubic structure. This is also very 
attractive in that liquid Na and K freeze into this crystalline phase. For the 
model, Wigner ’ had earlier anticipated that the completely degenerate 
limit would freeze into a body-centred cubic structure in order to lower the 
Madelung energy of a lattice of point charges in a uniform background 
below that of other  structure^.'^ Therefore, the one-component plasma 
transition can be referred to as “classical Wigner crystallization.” 

Of course, it can be argued, as mentioned above in the discussion of 
acoustic phonons in Na and K, that the long-range Coulomb interactions 
are screened. Nevertheless, the recent work of Ross’ has compared thermo- 
dynamic calculations on the molten alkalis using different reference liquids, 
e.g. hard sphere and one-component plasma, and he has concluded that the 
one-component plasma is the best reference liquid available to us presently 
for discussing liquid Na. Of course, electron-ion interaction then has to 
be introduced in the well-known manner via pseudopotential theory. To 
get Lindemann’s Law of Melting, such pseudopotential corrections are 
quite essential. But as Tosi and his colleagues have shown,16 the full structure 
factors of the simple liquid alkalis can be very usefully approximated by 
starting from the one-component plasma structure. 

4 CHARGE-CHARGE LIQUID STRUCTURE FACTOR S,,(g) 
A N D  FREEZING OF ALKALI HALIDES 

Having established the interest in the principal peak of the structure factor 
S(q)  for one-component systems, we turn to effect a generalization to the two- 
component charged fluids, of which the simplest are the molten alkali halides. 
The discussion below is based on the work of March and Tosi.’ 

In connection with the one-component systems discussed so far, we re- 
ferred to the crystalline state as being characterized by order parameters 
which were the Fourier components of the periodic ionic density. The 
generalization to an ionic crystal like NaCl is clear. One introduces the 
Fourier components of the periodic densities of cations and anions, p+(r) 
and p-(r). We then define the number density pN = p+ + p -  and the charge 
density pp = p +  - p -  , and Fourier decompose these. Then, in place of the 
three partial radial distribution functions gNa-Na, gcl -c l  and the cross- 
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ORDERING IN METALS AND MOLTEN SALTS 107 

correlation gNa-C,, or the corresponding partial structure factors, it is 
helpful for our present purposes to work with the number-charge structure 
factors defined by 

(4.1) 

If one examines neutron experiments on molten NaCI, one finds that if one 
forms the above structure factors from the data then (i) S,,(q) is rather 
gas-like, (ii) SNQ(4) exhibits very little structure and (iii) SQp(q) has a pro- 
minent principal peak and qualitatively resembles S(q) of an ordinary one- 
component liquid just above its freezing point. 

Therefore, March and Tosi’ have studied the available experimental 
data on the molten alkali halides for the height of the principal peak in 
SQQ and Table I is taken from their work. 

1 S,lv(q) = ( P N ( d P N (  - 4 ) )  
sNQ(q) = ( P N ( q ) P Q ( - q ) )  

sQQ(q) = ( P Q ( q ) P  - Q( - 4)) 

TABLE I 

Experimental results for height of principal peak of charge 
charge structure factor S,, in molten alkali halides 

NaC1” KCI” RbC1” CsClzo 

S;g 3.2 4.4 3.6 3.1 

Coupling 
parameter 71 65 66 65 

(T - T,)/T,” 0.070 0.023 0.035 0.059 

a T,, is the observed melting temperature. T is the tempera- 
ture of the neutron measurements of structure factors. The 
coupling parameter for this “two-component plasma” is 
defined in analogy with Eq. (2.l), ra being the mean inter- 
particle spacing. 

It is gratifying, following the previous discussion on the one-component 
plasma, that at freezing the coupling parameter is nearly constant, and as 
defined is around 67 k 3. This corresponds, of course, to criterion (I) above 
for the one-component plasma. As regards criterion (11), it will be seen from 
the second row of Table I that the measurements recorded are at different 
temperatures relative to the melting point. March and Tosi5 have made an 
extrapolation, which is long and therefore somewhat rough, of this data to 
TM and they estimate 

N 5 99 

at melting. It has to be cautioned however that there is a variation of radius 
ratio through Table I, and though it is not large we have presently no means 
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108 N. H. MARCH 

of telling how this will affect SQ“;;“. But that care is needed with a wide variation 
is clear from the results of Gillan et al.” that for large radius ratio and strong 
coupling a two-component plasma will eventually polymerize and there will 
then be a coordination number of two. It seems clear that the type of criteria 
presented in this article will be reliable when there is little change in coor- 
dination number on melting. 

It is of interest here also’ to comment that Reiss et ~ 1 . ~ ~  have pointed out 
that the melting temperature of ionic crystals is directly correlated with 
e2/(R+ + R - ) ,  that is with the inverse of the sum of ionic radii. The con- 
stancy of the coupling parameter in Table I, anticipated from the plasma 
models underlying the present discussion, affords a ready explanation. For 
this criterion of constant r gives the melting temperature as being inversely 
proportional to the near-neighbour distance a. But first neighbour interionic 
distances in alkali halides are well known to obey an additivity law in terms 
of ionic radii and thus the connection of the plasma criterion with the work of 
Reiss et ~ 1 . ~ ~  can be established. 

5 DEBYE-HUCKEL MODEL OF SUPERIONICS 

In this review of phase transitions induced by Coulomb interactions, we 
wish at this point to refer to fast ion conduction in the fluorite structure. 
We can be quite brief here, as a recent review of this area is already available.23 

The important point here is to establish whether, in the transition to a 
state of fast ion conduction, the Coulomb interaction between charged 
Frenkel defects can induce the superionic transition. This has been con- 
sidered recently by March et Their work follows Lidiard2’ including 
the interaction between charged defects by Debye-Huckel theory, which we 
referred to briefly in Section 2 above. Such an approach was used to treat 
melting of ionic crystals in terms of Schottky defects by Kurosawa:26 but 
March et emphasize that the Kurosawa type transition, modified to 
apply to Frenkel defects, may well be much more appropriate to explain the 
transition to the superionic state than to treat melting, for which the plasma 
picture of the previous section seems to afford a more fundamental approach. 

The idea is simply stated; it is to treat charged anion vacancies and anion 
interstitials by electrolyte theory, as moving in a medium with dielectric 
constant 6 .  Though the (fluorite) lattice is not incorporated explicitly in the 
model, one introduces a length a as the distance of closest approach of a 
vacancy and an interstitial. 

Linear Debye-Hiickel theory27 then leads to the chemical potential p of 
either vacancy or interstitial as 

e2K 
241 + K a )  

p =  - 
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ORDERING IN METALS AND MOLTEN SALTS 

where K-' is the Debye-Huckel shielding length given by 

I09 

(5.2) 

p being the density of Frenkel defects. 

5.1 Instability induced by Coulomb interaction between Frenkel 
defects 

In connection with the thesis of this review, we want to stress here that the 
Coulomb interaction leads to an instability of the assembly of interacting 
Frenkel defects above a certain temperature T,. Thus, if we write the concen- 
tration c of Frenkel defects in terms of its Arrhenius value co for non-inter- 
acting defects and the chemical potential p in Eq. (5.1) we obtain 

The chemical potential is evidently dependent on c and from Eq. (5.1) is 
leading to an enhancement of the Frenkel defect concentration over its 
Arrhenius value co. As the temperature is raised, there is a cooperative 
manifestation of the interactions in reducing the Frenkel formation energy 
which leads to no solution of Eq. (5.3) for c above a temperature T,. This 
instability occurs at concentration c, given by 

where the form of the functionfis determined by the Debye-Huckel theory. 

5.2 

In relation to our discussion of the transitions induced in one and two 
component plasmas, at a critical value of the coupling parameter r of 
Eq. (2.1), it is of interest that the critical concentration c, is determined by the 
ratio of Coulomb energy e2/Ea to k ,  T,. If we use experimental data, it 
turns out that for CaFz, SrF, and BaF,, this ratio at the superionic transition 
is, within experimental error, the same for these three fluorites. Thus, for 
these three materials, the transition will occur according to Debye-Huckel 
theory at the same critical concentration c,. 

Solving the Debye-Hiickel equations for the temperature of the instability, 
which is identified with the superionic transition to a disordered sublattice 

Relation t o  disordering transition t o  fast ion conduction 
in fluorites 
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110 N. H. MARCH 

configuration, the temperature is found to be given byz7 ( K ,  = K(T,))  

This formula is sensitive to the choice of distance of closest approach a. If 
one chooses a to get the correct T,  for CaF, as an example, one findsz7 
c, N 3 %  and a to be about 3 of the F-F distance which does not seem 
unreasonable. It is tempting to think of the disorder above T,  in terms of 
sublattice melting, but Catlow has argued strongly against such a picture.” 

6 ELECTRON LIQUIDS AND ELECTRON CRYSTALS 

The discussion so far has centred round assemblies which are classical. 
We want to conclude this review by discussing completely degenerate 
electron assemblies and asking whether electronic order can exist due to 
Coulomb repulsions between the electrons. A major advance in such a dis- 
cussion was due to Wigner,” who considered electronic order in the jellium 
model of a simple metal. As remarked above, jellium is a quantum system of 
interacting electrons moving in a uniform positive neutralizing background 
which is not allowed to respond. 

As remarked previously, the essential parameter is the mean interelectronic 
distance r, .  Wigner pointed out that in the low density limit when r, ex- 
ceeded a certain critical value, the electrons would crystallize on to a body- 
centred-cubic lattice to lower the Madelung energy. We still do not know 
the critical value of r, with the same certainty that we know the critical r 
in the classical one-component plasma, because clearly the quantum- 
mechanical Wigner crystallization is a more profound matter than its 
classical analogue. However, the lowest electron density metal, Cs, has 
an r,  of 5 Bohr radii, and clearly the electrons are delocalized since it is 
metallic. As reviewed by Care and March,30 many theoretical estimates of 
the critical r, exist, ranging from 10 to 300 Bohr radii, but current trends are 
towards a value of 60-80 Bohr radii. (See Note added in proof, p. 113.) 

The electronic ordering as the transition is approached can be estimated 
and the pair functions g(r )  are shown in Figure 4. Curve (i) for Y, - 100 Bohr 
radii is estimated from the localized Wigner oscillator  orbital^.^ We see 
that the Fermi hole limit, r, tends to zero, gives way to a regime of short- 
range order which we term an electron liquid, and this, as r, increases, 
eventually gives way to a long-range ordered electron crystal. 

The momentum distribution associated with the different regimes goes 
from the non-interacting Fermi distribution to a gaussian form for the 
electron crystal. It has been argued that in the metallic phase, at absolute 
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ORDERING IN METALS AND MOLTEN SALTS I l l  

FIGURE 4 Pair distribution function for completely degenerate electrons in uniform back- 
ground of positive charge, as mean density is varied. Lengths are measured in units of r s .  Curve 
(i) Low density. Electron crystallization has occurred. Curve (ii) Intermediate density. This is the 
regime of the electron liquid. Curve (iii) Electron gas. Fermi hole is drawn and is due entirely 
to statistical correlations. 

zero, the discontinuity in the Fermi distribution is a useful order parameter 
to discuss the metal-localized electron crystal tran~ition.~’ 

6.1 

Though a good deal of attention has focused on the possibility of electron 
crystals existing in (a) highly compensated semiconductors and (b) in two- 
dimensional situations, for example electrons on the surface of liquid 
helium,30 we shall conclude this review by summarizing evidence in favour 
ol‘ the existence of an electron liquid in molten metals. That such a situation 
indeed obtains was first noted by Egelstaff et ~ - 4 1 . ~ ~  They compared the 
structure factors for liquid metals with those of other liquids, the comparison 
being made by using neutron and X-ray data. In Table 11, the intensity 
ratios they gave are summarized. 

Electron liquids in molten metals 

TABLE I1 

Group Neutron peak height 

X-ray peak height 
Liquefied rare gases 0.98 f 0.03 
Molecular fluids 1.12 k 0.04 
Monovalent metals 0.87 k 0.04 
Polyvalent metals 0.92 k 0.03 
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112 N. H. MARCH 

Attention is focused in this table exclusively on the height of the main 
peak. From the table, Egelstaff et al. concluded that since atomic form 
factorsf(q) in Eq. (1.1) had been used in obtaining the X-ray peak height, 
the first entry told us that the electrons, in say liquid argon, were distributed 
just as in a free space argon atom, while the second entry told us that chemical 
bonding had spread out the electrons in r space and made the scattering 
factor more compact in q space. This would bring X-ray and neutron results 
together in the molecular fluids considered. But similar delocalization of 
the valence electrons in the metals would, as Egelstaff et al. pointed out, 
enhance the “disagreement” between X-ray and neutron data. They con- 
cluded that there was longer-range order among the electrons than in the 
ions of molten metals. 

Further work has been of three kinds: (i) experiments to get electron dif- 
fraction data34 of comparable accuracy to available X-ray and neutron 
data, to enable the extraction of the pair correlation function3j (cf. Figure 4) 
between conduction electrons, (ii) theoretical work to estimate the effect of 
weak-electron ion interaction on the electron pair correlation function35 
and (iii) an extension of the analysis of Egelstaff et al. away from the first 
peak, from available X-ray and neutron data.36,37 

We restrict ourselves here to saying that D ~ b s o n ~ ~  for Na, and Johnson37 
for K, have argued, following Egelstaff et ~ l . , ~ ~  that there is indeed electronic 
ordering. This, they propose, is usefully talked about in terms of reflections 
which are consistent with (local) face-centred-cubic ordering in liquid Na 
and K. March and T o ~ i ~ ~  have made the suggestion that one can understand 
this in terms of a combination of electron-ion and electron-electron inter- 
actions, but since it has not yet proved possible to test their proposal ex- 
perimentally we shall not go into it here. 

7 SUMMARY 

Features associated with the Coulomb force have been emphasized in 
connection with phase transitions that it can induce. The argument ,has been 
built round plasma models. For the one-component classical plasma, two 
important results are well established : 

a) The maximum value of the liquid structure factor, S,,, = 2.71. It has 
been argued that this is already relevant to the freezing of Na (S,,, = 2.80 at 
373 K) and K(S,,, = 2.73 at 338 K). 

b) (e2/r,)/(kBT,) = 160, rs being the mean interparticle spacing and T, 
the melting temperature. 
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ORDERING IN METALS AND MOLTEN SALTS 1 I3 

Building on the above, molten salt data lead to the prediction that freezing 

c) the maximum value of the charge-charge structure factor is about 5, 

d) the coupling parameter corresponding to (b) above is near 70. 

It would clearly be ofinterest if neutron measurements very near the freezing 
point could be made on a number of molten alkali halides to test the above, 
and in particular to see if there is significant dependence on radius ratio. 
Evidently, computer experiments on a mixture of positively and negatively 
charged hard spheres, with a radius ratio near to unity, would be worthwhile 
to complement existing results for large radius ratio.2' 

Though we have discussed superionics only rather briefly, it has been 
demonstrated that Coulomb interactions between Frenkel defects can drive 
the transition, and more work is to be expected from this standpoint. 

Finally, after a brief survey of the theory of jellium, the results of diffraction 
experiments have been used to demonstrate that there is growing evidence 
for electron liquids, with quite a degree of short-range order, in molten 
metals. 

should occur when: 

and 
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Note added in proof. 

The Monte Carlo study of Ceperley and Alder ( J .  Phys. Colloq (France), 
41, No. C-7, p. 295-8, 1980), has confirmed that the Wigner transition in 
jellium occurs at r, around 100 Bohr radii. 
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